0%

题意描述

洛谷链接

LibreOJ 链接

对于一个序列,定义其众数为序列中出现次数严格大于一半的数字。注意该定义与一般的定义有出入,在本题中请以题面中给出的定义为准。

一开始给定 \(n\) 个长度不一的正整数序列,编号为 \(1 \sim n\),初始序列可以为空。这 \(n\) 个序列被视为存在,其他编号对应的序列视为不存在。

\(q\) 次操作,操作有以下类型:

  • \(1 \ x \ y\):在 \(x\) 号序列末尾插入数字 \(y\)。保证 \(x\) 号序列存在,且 \(1 \le x, y \le n + q\)
  • \(2 \ x\):删除 \(x\) 号序列末尾的数字,保证 \(x\) 号序列存在、非空,且 \(1 \le x \le n + q\)
  • \(3 \ m \ x_1 \ x_2 \ x_m\):将 \(x_1, x_2, \ldots, x_m\) 号序列顺次拼接,得到一个新序列,并询问其众数。如果不存在满足上述条件的数,则返回 \(-1\)。数据保证对于任意 \(1 \le i \le m\)\(x_i\) 是一个仍然存在的序列,\(1 \le x_i \le n + q\),且拼接得到的序列非空。注意:不保证 \(\boldsymbol{x_1, \ldots, x_m}\) 互不相同,询问中的合并操作不会对后续操作产生影响。
  • \(4 \ x_1 \ x_2 \ x_3\):新建一个编号为 \(x_3\) 的序列,其为 \(x_1\) 号序列后顺次添加 \(x_2\) 号序列中数字得到的结果,然后删除 \(x_1, x_2\) 对应的序列。此时序列 \(x_3\) 视为存在,而序列 \(x_1, x_2\) 被视为不存在,在后续操作中也不会被再次使用。保证 \(1 \le x_1, x_2, x_3 \le n + q\)\(x_1 \ne x_2\)、序列 \(x_1, x_2\) 在操作前存在、且在操作前没有序列使用过编号 \(x_3\)

假定 \(C_l = \sum l_i\) 代表输入序列长度之和,\(C_m = \sum m\) 代表所有操作 \(3\) 需要拼接的序列个数之和;对于所有测试数据,保证 \(1 \le n, q, C_m, C_l \le 5 \times {10}^5\)

阅读全文 »

题意描述

洛谷链接

对于给出的 \(n\) 个询问,每次求有多少个数对 \((x,y)\),满足 \(a \le x \le b\)\(c \le y \le d\),且 \(\gcd(x,y) = k\)\(\gcd(x,y)\) 函数为 \(x\)\(y\) 的最大公约数。

对于 \(100\%\) 的数据满足:\(1 \le n,k \le 5 \times 10^4\)\(1 \le a \le b \le 5 \times 10^4\)\(1 \le c \le d \le 5 \times 10^4\)

阅读全文 »

莫比乌斯函数

了解莫比乌斯反演前,我们先要了解莫比乌斯函数。记 \(\mu(n)\) 为莫比乌斯函数,\(n\) 可被分解质因数为 \(n = \prod_{i = 1}^{m}{ {p_i}^{c_i} }\) 定义如下:

\[ \mu(n) = \begin{cases} 1 & n = 1 \\ 0 & \exists i \in [1, m], c_i > 1 \\ (-1)^m & \forall i \in [1, m], c_i = 1 \\ \end{cases} \]

形式化地解释一下:

  • \(n = 1\) 时,\(\mu(n) = 1\)
  • \(n\) 存在至少一个出现次数大于等于两次的质因子时,\(\mu(n) = 0\)
  • \(n\) 的所有质因子仅出现过一次,且 \(n\) 有奇数个质因子时,\(\mu(n) = -1\)
  • \(n\) 的所有质因子仅出现过一次,且 \(n\) 有偶数个质因子时,\(\mu(n) = 1\)
阅读全文 »

题意描述

洛谷链接

有一次,HKE 和 LJC 在玩一个游戏。

游戏的规则是这样的:LJC 在纸上写下两个长度均为 \(n\) 的数列 \(a\)\(b\),两个数列一一对应。HKE 每次可以找两个相邻的数 \(a_i\)\(a_{i + 1}\),如果它们两个不互质,HKE 可以选择得到 \((b_i + b_{i + 1})\) 分,然后擦掉 \(a\)\(b\) 位置上的第 \(i, i + 1\) 个数,并把两个序列重新按顺序编号。当所有相邻的数互质时,游戏结束。

HKE 想知道他最大得分是多少。

阅读全文 »

题意描述

洛谷链接

LibreOJ 链接

小豆现在有一个数 \(x\) ,初始值为 \(1\) 。 小豆有 \(Q\) 次操作,操作有两种类型:

  • 1 m\(x = x \times m\) ,输出 \(x \bmod M\)

  • 2 pos\(x = x /\)\(pos\) 次操作所乘的数(保证第 \(pos\) 次操作一定为类型 1,对于每一个类型 1 的操作至多会被除一次),输出 \(x\bmod M\)

阅读全文 »

题意描述

HydroOJ 链接

打开了黑魔法师 Vani 的大门,队员们在迷宫般的路上漫无目的地搜寻着关押 applepi 的监狱的所在地。突然,眼前一道亮光闪过。“我,Nizem,是黑魔法圣殿的守卫者。如果你能通过我的挑战,那么你可以带走黑魔法圣殿的地图……”瞬间,队员们被传送到了一个擂台上,最初身边有一个容量为 \(k\) 的包包。

擂台赛一共有 \(n\) 项挑战,各项挑战依次进行。第 \(i\) 项挑战有一个属性 \(a_i\),如果 \(a_i \ge 0\),表示这次挑战成功后可以再获得一个容量为 \(a_i\) 的包包;如果 \(a_i=-1\),则表示这次挑战成功后可以得到一个大小为 \(1\) 的地图残片。地图残片必须装在包包里才能带出擂台,包包没有必要全部装满,但是队员们必须把获得的所有的地图残片都带走(没有得到的不用考虑,只需要完成所有 \(n\) 项挑战后背包容量足够容纳地图残片即可),才能拼出完整的地图。并且他们至少要挑战成功 \(l\) 次才能离开擂台。

队员们一筹莫展之时,善良的守卫者 Nizem 帮忙预估出了每项挑战成功的概率,其中第 \(i\) 项挑战成功的概率为 \(p_i\%\)。现在,请你帮忙预测一下,队员们能够带上他们获得的地图残片离开擂台的概率。

阅读全文 »